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Ⅰ. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is

an irreversible chronic lung disease that narrows the

airways over a long period of time. According to the

World Health Organization (WHO), COPD is the

third leading cause of death globally in 2019 and is

responsible for approximately 6% of all deaths. COPD

is rare in low-income countries, but it ranks in the

top five in all foreign countries. COPD is caused by

several risk factors, including exposure to smoking

and air pollution. COPD cannot be cured in a short

period of time. Early diagnosis of the disease and

prompt treatment play an important role in reducing

mortality due to COPD.

Early symptoms of COPD include chronic cough

and phlegm, fatigue, and shortness of breath. The

problem with early diagnosis of COPD is that it is

difficult to detect because the early symptoms are not

clear. In modern times, chest X-ray, Pulmonary

Function Test (PFT), Chest Computed Tomography

(CT), and Arterial Blood Gas Analysis (ABGA) are

used to diagnose COPD[1]. Among them, PFT can

easily obtain data in terms of low inspection cost and

short inspection time. However, in the prior research

for early diagnosis of COPD, authors mainly

conducted image analysis such as CT. H. Park et al.
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ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is a serious lung disease that makes breathing difficult and

cannot be easily detected. Even though early diagnosis technology for COPD using machine learning has been

developed, Pulmonary Function Test (PFT) data-based time series prediction studies are still lacking. We use

PFT data with insufficient measurement intervals, propose a Long Short-Term Memory (LSTM) to predict PFT

values for the future 1Q from the past 2Q, and classify whether COPD occurs or not. The data were

interpolated to resolve the imbalanced time period. To confirm the validity of the augmented data, Multivariate

Analysis of Variance (MANOVA) was performed, and through the rigorous MANOVA, we proved that there

was no significant difference between the original and interpolated data. Mean Absolute Percentage Error

(MAPE), recalls, and F1 scores, which are the harmonic mean of precision and recall for classification, were

measured for two test scenarios: only the original data and the augmented data. Finally, we found the

interpolated data decreased MAPE by almost 7%, however, improved recall and F1 score by almost 22% and

12% for obstructive pulmonary disease, compared with the original data. Besides, we can predict COPD within

3 months, irrelevant to smokers and non-smokers.
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conducted a study predicting spirometry from CT

images. They classified high-risk participants by

spirometry values and used a Convolutional Neural

Network (CNN)[2].

Although classification research through machine

learning is active, time series analysis research using

PFT time series data is still lacking. We use

intermittent PFT time series data from multiple

tentative patients to predict Forced Vital Capacity

(FVC) and Forced Expiratory Volume in 1 second

(FEV1) and types of ventilatory disorders. However,

an imbalance of measurement intervals per patient

should be solved for time series analysis.

In this paper, we propose a Long Short-Term

Memory (LSTM) based COPD prediction framework

to diagnose the patient’s COPD within the next 1

quarter (Q). First, to solve the problem of the data

observation interval’s inconsistency, the training data

were downsampled based on a Q unit using

preprocessing and augmented with fill and

interpolation. We test the validity of the augmented

data using Multivariate Analysis of Variance

(MANOVA), and then confirm that there was no

difference between the augmented and the original test

data. To verify the MANOVA results, two scenarios

with the augmented and original test data are

presented. We predict the future 1Q based on the

well-refined training data during the past 2Q. Thus,

we improve the performance of the augmented version

such as Mean Absolute Percentage Error (MAPE) and

F1 score as follows: 7% reduction and 4%

enhancement, respectively. Among ventilatory

disorders, in the case of obstructive, recall and F1

score for the augmented test data improved by 22%

and 12%, respectively.

Ⅱ. Related Works

A lot of research has been conducted to diagnose

lung disease using artificial intelligence (AI)

technologies[3]. In this section, we describe the

previous research on machine learning and deep

learning related to COPD, as well as interpolation for

data preprocessing.

2.1 AI Approaches to Predict COPD Diagnosis
L. Beverin et al. showed high performance in

predicting lung disease based on machine learning

using PFT data. The authors predicted Total Lung

Capacity (TLC) using Random Forest (RF)[4]. The

study used PFT data. As a result of the study, the

sensitivity, specificity, and F1 score of the algorithm

predicting restrictive ventilatory impairment were 83,

92, and 75%, respectively. This study uses similar

features to ours. However, they cannot predict COPD

using the proposed RF model. However, D. Spathis

and P. Vlamos classified COPD using RF[5], which

shows a precision of 97.7%. The authors used PFT

and ABGA data. This paper revealed that smoking,

FVC, FEV1, and age are important factors for COPD

through the feature importance of RF. They can

predict COPD at the time the patient is tested.

However, even if the patient does not have COPD

at the time of measurement, COPD may appear in

the future if the patient’s condition is worsening.

Since we use PFT time series data, the nearest future

onset of COPD can be predicted by considering

changes in the patient’s condition. There are studies

using the LSTM model to study early diagnosis of

COPD. V. Nunavath et al. predicted the health status

of COPD patients[6]. The authors used an LSTM

model based on ABGA data. The LSTM model was

learned based on data during the past 5 days and

showed an accuracy of 84.12% in predicting the

patient’s health status one day in advance. This

approach does not distinguish whether patients have

COPD or not. D. Perna and A. Tagarelli proposed

a learning framework using respiratory sound data and

Recurrent Neural Network (RNN)-based LSTM,

Bidirectional LSTM (BiLSTM), Gated Recurrent Unit

(GRU), and Bidirectional GRU (BiGRU)[7]. Among

the four models, LSTM consistently showed better.

Thus, we consider choosing the LSTM-based COPD

research.

2.2 Interpolation Approaches to Augment
Insufficient COPD Data

Recent research has improved performance through

interpolation in insufficient situations of input data.

O. O. Abayomi-Alli et al. used biomedical voice



The Journal of Korean Institute of Communications and Information Sciences '24-03 Vol.49 No.03

348

measurement, the Oxford Parkinson Disease dataset,

and BiLSTM for early detection of Parkinson's

disease[8]. The research presents interpolation to

augment the small dataset. The interpolation methods

used were cubic spline and Piecewise Cubic Hermite

Interpolating Polynomial (PCHIP). PCHIP creates a

cubic Hermite interpolating polynomial from data

points in the data interval. Each piece is monotonic

and is characterized by smoothly connecting data

points between data intervals[9]. O. O. Abayomi-Alli

et al. argue that the main limitation of interpolation

is that it produces out-of-range and noisy data. In this

paper, instead of using cubic spline interpolation,

linear interpolation and PCHIP interpolation were

used to solve the problem, because linear interpolation

and PCHIP interpolation are both monotonic. H. Watz

et al. used interpolation for statistical analysis of

COPD[10]. The authors used data from patients who

completed lung capacity measurements daily for 56

days, at least once per week, for COPD postmortem

analysis. Missing values in the data were filled in

using the linear interpolation, fill, and carry forward

methods. FEV1 continuously and smoothly decreases

as life continues[11]. Thus, two interpolations are

presented in this paper. The first is linear

interpolation, and the second is PCHIP. Cubic spline

interpolation is not considered in this paper because

negative numbers may occur. Since FEV1 does not

shake, it cannot be negative, and shows a gradual

pattern, we adopt linear interpolation and PCHIP,

which are monotonic interpolations.

Ⅲ. System Model

3.1 Observed Data
The dataset was provided by Chungnam National

University Hospital and collected between January 1,

2020, and July 31, 2022. Table 1 shows the features

of the proposed framework. One-hot encoding was

performed for sex.

PFT proceeds with three stages: inhale with

maximum effort, exhale with maximum effort, and

breathe in again with maximum effort. During PFT,

flow and volume are measured and expressed as a

time-volume curve and volume-flow curve. The two

curves show FVC, FEV1, Forced Expiratory Flow

(FEF), and Peak Expiratory Flow (PEF). FVC refers

to the volume of air when you inhale as much as

possible and then exhale all the way with maximum

effort. FEV1 refers to the amount of air exhaled with

Features Interpolation Units

Age

N/A

Year

Sex Male and female

Pack year

The number of packs of 
cigarettes smoked per day 

multiplied by the number of 
years of smoking.

Height Linear 
interpolation

cm

Weight kg

FVC

PCHIP

L

FEV1 L

FEF25-75% L/sec

PEF L/sec

Table 1. The features of the proposed framework.

Fig. 1. Time-volume curve results from PFT.

Fig. 2. Volume-flow curve results from PFT.
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maximum effort in 1 second after starting to inhale

and exhale with maximum effort. FEF25-75% refers to

the average airflow between 25% and 75% of FVC.

PEF is the maximum airflow achieved during
exhalation with maximal effort. FVC, FEV1, and PEF

are shown in Fig. 1 showing the time-volume curve.

PEF and FEF are shown in Fig. 2 showing the

volume-flow curve. FVC% and FEV1/FVC can be

used to distinguish types of ventilatory disorders[12].

FVC% is FVC (measured)/FVC (predicted).

FEV1/FVC is FEV1 (measured)/FVC (measured).

Predictions are calculated by spirometric reference

equations. We used Morris’s reference equation[13].

The criteria for classification of ventilation disorders

are shown in Fig. 3. Restrictive is a symptom of

decreased TLC. Therefore, it shows a decrease in

FVC. Obstructive is a symptom of narrowing of the

airway. Mixed shows both restrictive and obstructive

symptoms.

3.2 Preprocessing
This section describes a method for keeping the

intervals of time series data constant and a method

for handling missing values. The proposed framework

is shown in Fig. 4. The dataset has different intervals

because PFT data were obtained regardless of smokers

and non-smokers. Accordingly, to solve this problem,

we assume observations in Q units and perform

downsampling at Q intervals. If the PFT frequency

increases in the future, downsampling can be

performed on a monthly basis shorter than quarterly.

The fill method was used for the sex and pack year

features because there is only one value in one patient.

Linear interpolation does not reflect the characteristic

of the age, which increases by one year with each

birthday. However, since there was no information on

the patient's birthday, the patient's birthday was

assumed to be January 1st. Therefore, every January

1st, the age is increased by one year. Min-max

normalization was performed.

The number of the original and augmented data is

1,408 and 1,446, respectively. The split ratio of the

original data and the augmented data is 49:51. We

validate the use of augmented data to predict COPD.

For the original data group and the augmented data

group, pack year, age, height, weight, FVC, FEV1,

FEF25-75%, and PEF are analyzed using MANOVA.

We set alpha to 0.05, and the results are shown in

Table 2.

As a result of MANOVA analysis, the p-value was

0.1083, which is larger than the alpha value. The null

hypothesis that “the overall vector averages of the two

groups are the same” cannot be rejected, and then

there is no significant difference between the two

groups. To perform MANOVA, multivariate

normality and multivariate homoscedasticity must be

satisfied. If the absolute value of skewness is greater

than 3 or the absolute value of kurtosis is greater than

10, there is a problem with normality[14]. The

skewness of the original data is between

approximately -1.22 and 1.45, and the kurtosis is

approximately between -0.38 and 2.25. The skewness

of the augmented data is between approximately -1.22

and 1.46, and the kurtosis is approximately between

Methods Statistic
Values

F
Values

Num
DF

Den
DF

Pr (>F)

Wilks’
lambda

0.99541 1.64 8 2845 0.1083

Pillai’s
trace

0.0045903 1.64 8 2845 0.1083

Roy’s
largest root

0.0046115 1.64 8 2845 0.1083

Hotelling’s
trace

0.0046115 1.64 8 2845 0.1083

Table 2. The results of MANOVA for raw dataset and
augmented dataset. Num DF is the Numerator Degrees of
Freedom, Den DF is the Denominator Degrees of Freedom.

Fig. 3. The criteria for classification of ventilation
disorders.



The Journal of Korean Institute of Communications and Information Sciences '24-03 Vol.49 No.03

350

-0.50 and 3.16. Therefore, we can ensure that

multivariate normality is satisfied.

Box’s M Test was performed to test multivariate

homoscedasticity. We set alpha to 0.001. The p-value

of Box’s M Test is 0.02904, which is larger than the

alpha value. Since the null hypothesis that variances

between multivariate groups are equal cannot be

rejected, homoscedasticity is satisfied. The detailed

results of the Box’s M Test are shown in Table 3.

Box’s M Test

Chi-Square Degrees of Freedom p-value

53.718 36 0.02904

Table 3. The results of Box’s M Test for raw dataset
and augmented dataset.

3.3 Proposed LSTM-Based COPD Forecasting 
Framework

We aim to put in input data at time T and T-1

and to get output data at time T+1. In other words,

we predict future 1Q data with past 2Q data. Fig. 5

shows an example of the preprocessing process. This

paper downsamples irregular time series data. For data

merged due to downsampling, the value of the last

data is used. To extract samples to be used in LSTM,

the sample size was set to 3, which is the sum of

the past 2Q and the future 1Q, and sampling was

performed by sliding. The entire observed data

includes augmented data. To distinguish between

augmented data and original data, if there are no

missing values in the sample, the starting index of

the sample is stored in raw_index_list. Otherwise, it

is stored in not_raw_index_list. And then the missing

values of the downsampled data are filled by

interpolation or filling. The example in Fig. 5 used

linear interpolation. Then, sampling is performed

using the index information in raw_index_list and

not_raw_index_list.

Here, we define two test scenarios and conduct

experiments.
Ÿ Augmented Test Data (ATD): Both augmented data

and original data are used without distinction. 20%

of the total is used as test data, and the remaining

80% is used as training and validation data.
Ÿ Raw Test Data (RTD): the augmented data is used

as training and validation data, and the original data

is used as test data.

Fig. 4. LSTM-based COPD prediction framework.

Fig. 5. An example of the process of preprocessing and sampling.
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Even though there was no significant difference

between the original data and the augmented data,

there was a difference in the samples of ATD and

RTD. This difference arises because the method of

recognizing raw samples during the sample extraction

process is quite restricted. The number and ratio of

samples are shown in Table 8 in the Appendix.

We apply a stratified split scheme to split the data

into training and validation data and test data in ATD.

As RTD only uses raw data as test data, we cannot

apply the stratified split for RTD. To split training

and validation data, stratified K-fold cross-validation

is performed. Stratified techniques can reduce bias

when splitting data evenly or evaluating model

performance.
Here, we apply K=5, and the average evaluation

of each fold was used as the result. MAPE was used

as a regression metric. Accuracy, precision, recall, and

F1 score were used as classification metrics. Mean

Squared Error (MSE) was used as a loss metric.

  

 
  



   
 (1)

where Ai is an actual value, Fi is a forecast value,

and n is a sample size.

  

 
  



 

     (2)

       
  

 (3)

where TP is a true positive, FP is a false positive,

TN is a true negative, and FN is a false negative.

Pr   


 (4)

   


 (5)

F1 score, which is used as the harmonic mean of

precision and recall for COPD classification, is

expressed by (4) and (5).

   Pr 

 × Pr×
 (6)

Ⅳ. Experimental Results

This section summarizes the hyperparameters in

Table 4 and presents test results of each scenario in

Tables 5, 6, and 7.

Table 5 shows the MAPE for each age group for

the two test scenarios. The ATD showed a lower error

compared to the RTD. The total average MAPE

decreased by 7%. Here we describe MAPE with the

lower error as a boldface type.

Table 6 shows the accuracies by age group for the

two test scenarios. The ATD showed higher accuracy

compared to the RTD. Here, we describe higher

accuracy as a boldface type.

Hyperparameters ATD RTD

Batch 32

Epoch 500 1000

Layer 2

Learning rate 0.001

Sequence length 2

Loss function MSE

Optimizer Adam

Table 4. Hyperparameters for ATD and RTD.

Groups

ATD RTD

FVC
MAPE

FEV1

MAPE
FVC

MAPE
FEV1

MAPE

Total 0.03 0.04 0.1 0.11

20s 0.04 0.04 0.02 0.05

30s 0.03 0.04 0.04 0.04

40s 0.06 0.06 0.06 0.08

50s 0.03 0.03 0.18 0.14

60s 0.03 0.04 0.12 0.11

70s 0.03 0.05 0.11 0.16

80s 0.02 0.03 0.05 0.03

Normal 0.03 0.03 0.08 0.08

Restrictive 0.06 0.07 0.13 0.11

Obstructive 0.02 0.04 0.08 0.11

Mixed 0.05 0.06 0.12 0.21

Table 5. MAPE by age groups and ventilatory disorders
for ATD and RTD.
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Age groups ATD RTD

Total 0.91 0.86

20s 0.77 0.67

30s 1 1

40s 0.9 0.88

50s 0.87 0.5

60s 0.91 0.89

70s 0.9 0.84

80s 0.96 1

Table 6. Accuracy of classification by age groups for
ATD and RTD.

Table 7 shows the precisions, recalls, and F1 scores

of the two test scenarios. The ATD showed higher

performance compared to the RTD. Here, we describe

higher precisions, recalls, and F1 scores as a boldface

type.

In the medical field, recall is considered important.

This is to reduce cases where actual positive patients

are judged negative. Besides, medical data have

severe imbalances between classes. Therefore, F1

scores are also effective. In classification, the recall

and F1 score of obstructive increased by 22% and

12%, respectively.

Through the results of the ATD and the RTD, the

error was reduced when using augmented data as a

test. In principle, it is correct to use only the original

data as a test, but in the case of the proposed

experiment, MANOVA confirmed that there was no

difference between the two groups, and even though

the measurement intervals of PFT data are unstable,

we prove meaningful results can be sufficiently

confirmed for COPD prediction even when

augmented data is used.

Compared to ATD, which includes augmented

samples as test data, RTD has less test data. Therefore,

the difference in the number of test data for the two

scenarios led to different results. Additionally,

because ATD has low epochs for train and many test

data against RTD, and the distributions for training

and validation data and test data are similar for each

class, ATD achieves better performance than RTD.

Ⅴ. Conclusion

By examining the outcomes from both the ATD

and RTD, we have confirmed that interpolation data,

whose availability has been verified by MANOVA for

PFT time series data, are reliable and can lead to

better performance in MAPE, recall, and F1 score.

PFT is relatively simple and inexpensive compared

to other tests for early diagnosis of COPD. However,

because the health status and severity of each patient

were different, the measurement intervals were not

consistent. Besides, it was not easy to obtain sufficient

PFT data to predict COPD. Nevertheless, by obtaining

reliable COPD predictions in terms of recall and F1

scores through PFT data, interpolation can provide

medical staff with reliable reference prediction results

compared to traditional COPD prediction judgments

through the naked eye or relying on expensive tests

for seriously ill patients.
Scenarios Type Precision Recall F1 score

ATD

Normal 0.94 0.92 0.93

Restrictive 0.90 0.75 0.82

Obstructive 0.90 0.95 0.93

Mixed 0.87 0.87 0.87

Average 0.90 0.87 0.89

RTD

Normal 0.89 0.91 0.90

Restrictive 0.79 0.87 0.83

Obstructive 0.91 0.73 0.81

Mixed 0.80 0.91 0.85

Average 0.85 0.86 0.85

Table 7. Precisions, recalls, and F1 scores for ATD and
RTD.
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Ⅵ. Appendix

Age

groups
Type

ATD RTD

The

Number

of Total

The

Number of

Training

and

Validation

The

Number

of Test

The ratio between

Training and

Validation (Left)

and Test (Right)

The

Number

of Total

The

Number of

Training

and

Validation

The

Number

of Test

The ratio between

Training and

Validation (Left)

and Test (Right)

20s

Normal 4 3 1 75 25 4 4 0 100 0

Restrictive 8 6 2 75 25 8 7 1 87.5 12.5

Obstructive 6 5 1 83.33 16.67 6 5 1 83.33 16.67

Mixed 16 13 3 81.25 18.75 16 15 1 93.75 6.25

30s

Normal 20 16 4 80 20 20 18 2 90 10

Restrictive 0 0 0 0 0 1 0 1 0 100

Obstructive 0 0 0 0 0 0 0 0 0 0

Mixed 0 0 0 0 0 0 0 0 0 0

40s

Normal 57 46 11 80.7 19.3 57 55 2 96.49 3.51

Restrictive 23 19 4 82.61 17.39 23 18 5 78.26 21.74

Obstructive 13 10 3 76.92 23.08 13 12 1 92.31 7.69

Mixed 12 9 3 75 25 12 12 0 100 0

50s

Normal 90 72 18 80 20 90 88 2 97.78 2.22

Restrictive 21 17 4 80.95 19.05 21 21 0 100 0

Obstructive 48 38 10 79.17 20.83 48 48 0 100 0

Mixed 23 18 5 78.26 21.74 23 23 0 100 0

60s

Normal 207 165 42 79.71 20.29 207 202 5 97.58 2.42

Restrictive 64 51 13 79.69 20.31 64 62 2 96.88 3.13

Obstructive 215 172 43 80 20 215 208 7 96.74 3.26

Mixed 74 59 15 79.73 20.27 74 73 1 98.65 1.35

70s

Normal 166 133 33 80.12 19.88 166 158 8 95.18 4.82

Restrictive 75 60 15 80 20 75 73 2 97.33 2.67

Obstructive 317 254 63 80.13 19.87 317 312 5 98.42 1.58

Mixed 109 87 22 79.82 20.18 109 103 6 94.5 5.5

80s

Normal 97 78 19 80.41 19.59 97 94 3 96.91 3.09

Restrictive 4 3 1 75 25 4 4 0 100 0

Obstructive 153 123 30 80.39 19.61 153 153 0 100 0

Mixed 61 49 12 80.33 19.67 61 60 1 98.36 1.64

Table 8. The number and ratio of samples used in LSTM. A restrictive sample in the age group ‘30s’ was removed from
the ATD. Because there was only one data, the stratified split could not be applied.
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